Table of Contents for
Postfix: The Definitive Guide

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Postfix: The Definitive Guide by Kyle D. Dent Published by O'Reilly Media, Inc., 2003
  1. Postfix: The Definitive Guide
  2. Cover
  3. Postfix: The Definitive Guide
  4. Foreword
  5. Preface
  6. Audience
  7. Organization
  8. Conventions Used in This Book
  9. Comments and Questions
  10. Acknowledgments
  11. 1. Introduction
  12. 1.1. Postfix Origins and Philosophy
  13. 1.2. Email and the Internet
  14. 1.3. The Role of Postfix
  15. 1.4. Postfix Security
  16. 1.5. Additional Information and How to Obtain Postfix
  17. 2. Prerequisites
  18. 2.1. Unix Topics
  19. 2.2. Email Topics
  20. 3. Postfix Architecture
  21. 3.1. Postfix Components
  22. 3.2. How Messages Enter the Postfix System
  23. 3.3. The Postfix Queue
  24. 3.4. Mail Delivery
  25. 3.5. Tracing a Message Through Postfix
  26. 4. General Configuration and Administration
  27. 4.1. Starting Postfix the First Time
  28. 4.2. Configuration Files
  29. 4.3. Important Configuration Considerations
  30. 4.4. Administration
  31. 4.5. master.cf
  32. 4.6. Receiving Limits
  33. 4.7. Rewriting Addresses
  34. 4.8. chroot
  35. 4.9. Documentation
  36. 5. Queue Management
  37. 5.1. How qmgr Works
  38. 5.2. Queue Tools
  39. 6. Email and DNS
  40. 6.1. DNS Overview
  41. 6.2. Email Routing
  42. 6.3. Postfix and DNS
  43. 6.4. Common Problems
  44. 7. Local Delivery and POP/IMAP
  45. 7.1. Postfix Delivery Transports
  46. 7.2. Message Store Formats
  47. 7.3. Local Delivery
  48. 7.4. POP and IMAP
  49. 7.5. Local Mail Transfer Protocol
  50. 8. Hosting Multiple Domains
  51. 8.1. Shared Domains with System Accounts
  52. 8.2. Separate Domains with System Accounts
  53. 8.3. Separate Domains with Virtual Accounts
  54. 8.4. Separate Message Store
  55. 8.5. Delivery to Commands
  56. 9. Mail Relaying
  57. 9.1. Backup MX
  58. 9.2. Transport Maps
  59. 9.3. Inbound Mail Gateway
  60. 9.4. Outbound Mail Relay
  61. 9.5. UUCP, Fax, and Other Deliveries
  62. 10. Mailing Lists
  63. 10.1. Simple Mailing Lists
  64. 10.2. Mailing-List Managers
  65. 11. Blocking Unsolicited Bulk Email
  66. 11.1. The Nature of Spam
  67. 11.2. The Problem of Spam
  68. 11.3. Open Relays
  69. 11.4. Spam Detection
  70. 11.5. Anti-Spam Actions
  71. 11.6. Postfix Configuration
  72. 11.7. Client-Detection Rules
  73. 11.8. Strict Syntax Parameters
  74. 11.9. Content-Checking
  75. 11.10. Customized Restriction Classes
  76. 11.11. Postfix Anti-Spam Example
  77. 12. SASL Authentication
  78. 12.1. SASL Overview
  79. 12.2. Postfix and SASL
  80. 12.3. Configuring Postfix for SASL
  81. 12.4. Testing Your Authentication Configuration
  82. 12.5. SMTP Client Authentication
  83. 13. Transport Layer Security
  84. 13.1. Postfix and TLS
  85. 13.2. TLS Certificates
  86. 14. Content Filtering
  87. 14.1. Command-Based Filtering
  88. 14.2. Daemon-Based Filtering
  89. 14.3. Other Considerations
  90. 15. External Databases
  91. 15.1. MySQL
  92. 15.2. LDAP
  93. A. Configuration Parameters
  94. A.1. Postfix Parameter Reference
  95. 2bounce_notice_recipient
  96. access_map_reject_code
  97. alias_maps
  98. allow_mail_to_files
  99. allow_percent_hack
  100. alternate_config_directories
  101. append_at_myorigin
  102. authorized_verp_clients
  103. berkeley_db_read_buffer_size
  104. biff
  105. body_checks_size_limit
  106. bounce_service_name
  107. canonical_maps
  108. command_directory
  109. command_time_limit
  110. content_filter
  111. daemon_timeout
  112. debug_peer_list
  113. default_destination_concurrency_limit
  114. default_extra_recipient_limit
  115. default_process_limit
  116. default_recipient_limit
  117. default_verp_delimiters
  118. defer_service_name
  119. delay_notice_recipient
  120. deliver_lock_attempts
  121. disable_dns_lookups
  122. disable_mime_output_conversion
  123. disable_vrfy_command
  124. double_bounce_sender
  125. empty_address_recipient
  126. error_service_name
  127. export_environment
  128. fallback_relay
  129. fast_flush_domains
  130. fast_flush_refresh_time
  131. fork_attempts
  132. forward_expansion_filter
  133. hash_queue_depth
  134. header_address_token_limit
  135. header_size_limit
  136. home_mailbox
  137. ignore_mx_lookup_error
  138. in_flow_delay
  139. initial_destination_concurrency
  140. ipc_idle
  141. line_length_limit
  142. lmtp_connect_timeout
  143. lmtp_data_init_timeout
  144. lmtp_lhlo_timeout
  145. lmtp_quit_timeout
  146. lmtp_rset_timeout
  147. lmtp_tcp_port
  148. local_destination_concurrency_limit
  149. local_recipient_maps
  150. luser_relay
  151. mail_owner
  152. mail_spool_directory
  153. mailbox_command
  154. mailbox_delivery_lock
  155. mailbox_transport
  156. manpage_directory
  157. masquerade_domains
  158. max_idle
  159. maximal_backoff_time
  160. message_size_limit
  161. mime_header_checks
  162. minimal_backoff_time
  163. mydomain
  164. mynetworks
  165. myorigin
  166. newaliases_path
  167. notify_classes
  168. parent_domain_matches_subdomains
  169. pickup_service_name
  170. process_id_directory
  171. proxy_interfaces
  172. qmgr_clog_warn_time
  173. qmgr_message_active_limit
  174. qmgr_message_recipient_minimum
  175. qmqpd_error_delay
  176. queue_directory
  177. queue_run_delay
  178. rbl_reply_maps
  179. recipient_canonical_maps
  180. reject_code
  181. relay_domains_reject_code
  182. relay_transport
  183. relocated_maps
  184. resolve_dequoted_address
  185. sample_directory
  186. sendmail_path
  187. setgid_group
  188. showq_service_name
  189. smtp_bind_address
  190. smtp_data_done_timeout
  191. smtp_data_xfer_timeout
  192. smtp_destination_recipient_limit
  193. smtp_helo_timeout
  194. smtp_mail_timeout
  195. smtp_pix_workaround_delay_time
  196. smtp_quit_timeout
  197. smtp_rcpt_timeout
  198. smtp_skip_5xx_greeting
  199. smtpd_banner
  200. smtpd_data_restrictions
  201. smtpd_error_sleep_time
  202. smtpd_expansion_filter
  203. smtpd_helo_required
  204. smtpd_history_flush_threshold
  205. smtpd_noop_commands
  206. smtpd_recipient_limit
  207. smtpd_restriction_classes
  208. smtpd_soft_error_limit
  209. soft_bounce
  210. strict_7bit_headers
  211. strict_8bitmime_body
  212. strict_rfc821_envelopes
  213. swap_bangpath
  214. syslog_name
  215. transport_retry_time
  216. undisclosed_recipients_header
  217. unknown_client_reject_code
  218. unknown_local_recipient_reject_code
  219. unknown_virtual_alias_reject_code
  220. verp_delimiter_filter
  221. virtual_alias_maps
  222. virtual_mailbox_base
  223. virtual_mailbox_limit
  224. virtual_mailbox_maps
  225. virtual_transport
  226. B. Postfix Commands
  227. C. Compiling and Installing Postfix
  228. C.1. Obtaining Postfix
  229. C.2. Postfix Compiling Primer
  230. C.3. Building Postfix
  231. C.4. Installation
  232. C.5. Compiling Add-on Packages
  233. C.6. Common Problems
  234. C.7. Wrapping Things Up
  235. D. Frequently Asked Questions
  236. Index
  237. About the Author
  238. Colophon
  239. Copyright

Backup MX

In DNS, MX records refer to mail exchangers (see Chapter 6). MX records contain both host and priority (or preference) information for sending mail to a domain. A backup MX server is one that receives mail for a particular domain, but is not the preferred server to receive the mail. If the preferred server or servers are down, the backup MX server receives the mail and queues it until one of the more preferred servers comes back online. Figure 9-1 illustrates delivery to a backup host when the primary host is not available. The backup queues messages until the primary is back online, whereupon the backup can deliver messages to it.

Delivery to backup MX host
Figure 9-1. Delivery to backup MX host

When your system is configured in DNS as a backup MX host, you don’t have to configure any special transport from your system to the primary system. Postfix uses the DNS records to determine how to route mail to the primary MX host. The only configuration required in Postfix is to indicate that it should receive mail for the domain by adding the domain name to the relay_domains parameter. When a sending MTA discovers that the primary mail system for a domain is down, it tries the next preferred one until it finds one that accepts delivery. If your system is a backup MX host, and the destination domain is listed in your relay_domains parameter, Postfix accepts the mail and queues it. Postfix periodically scans its queue and checks for a more preferred system to see if any are able to accept the message. Once a higher priority mail exchanger is back online, Postfix can deliver the message to it.

Postfix continues trying to deliver queued messages for the amount of time specified in the maximal_queue_lifetime parameter, which determines how long deferred messages stay in the queue before they are bounced back to the sender. The default value is five days. If you provide secondary mail service for primary servers that you know will be down longer than the default, you can extend the time.

Relay Recipients

It is highly recommended that you maintain a list of valid recipients for domains you provide backup MX services to. You should develop a regular process for obtaining an updated user list from your primary MX servers. If your system does not know all of the available mailboxes on the primary mail server, it must accept all messages. It’s only when your backup MX server tries to deliver them to the primary server that it discovers that a message cannot be delivered. At that point, your server must bounce the message back to the original sender.

Since spammers often send messages to made-up addresses, if your server does not know all the valid email addresses on the primary server, your server will unnecessarily accept a lot of mail that must be bounced. The bounce problem is exacerbated by the spammer tactic of forging sender addresses by using the real email addresses of innocent bystanders. The forged addresses receive all of the error notices for messages they never sent (see Chapter 11). The relay_recipient_maps parameter specifies lookup tables that should contain all of the addresses for domains listed in your relay_domains parameter:

relay_recipient_maps = hash:/etc/postfix/relay_recipients

The relay_recipients file should contain entries with the recipient address on the lefthand side. The righthand side is not used by Postfix, but you must specify a value:

#
# relay_recipients
#
user1@example.com         any_value
user2@example.com         any_value
user3@example.com         any_value

If your system is on the same network as the primary, and the user accounts are stored in some kind of database, you may be able to perform real-time lookups using MySQL or LDAP (see Chapter 15).

A potential problem is that once you set relay_recipient_maps, you must include email addresses for all domains you provide backup service to. If not, Postfix will reject messages that don’t appear in the lookup table. If you don’t know the valid addresses for some domains, you can specify a wildcard entry for that domain:

#
# relay_recipients
#
user1@example.com       any_value
user2@example.com       any_value
user3@example.com       any_value
@oreillynet.com         any_value

The final entry is a wildcard entry that allows messages for any address at the domain. Obviously, it’s better to obtain the list of valid addresses for the reasons mentioned earlier.

Fast Flushing

Networks that receive mail for many sites, such as ISP networks, typically have some customers whose systems aren’t always connected to the network. When the customer network is offline, the ISP queues its messages. When the site comes online, it can request immediate delivery of all its queued mail with the ETRN SMTP command:

220 mail.ora.com ESMTP Postfix
EHLO mail.example.com
250-auger.seaglass.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250 8BITMIME
ETRN example.com
250 Queuing started

If there are a lot of messages queued when a domain is ready to accept mail, searching every queue file would be time-consuming. Postfix provides a capability called fast flush to speed up queue processing for a particular domain. Fast flush is handled by the flush daemon, which maintains lists of messages that are queued for specific domains so that Postfix knows which messages to deliver when it receives an ETRN command.

By default, all of the sites listed in relay_domains are eligible for the fast flush service. You can include domains in addition to your relay domains by adding them to the fast_flush_domains parameter. Add a domain name as follows:

fast_flush_domains = $relay_domains, example.com

In this case http://example.com is a domain not already listed in relay_domains.

You can manually notify Postfix that a fast flush domain is ready to accept messages by issuing the postqueue -s command (or its equivalent, sendmail -qR) with the site name:

$ postqueue -s example.com