Table of Contents for
JavaScript: The Good Parts

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition JavaScript: The Good Parts by Douglas Crockford Published by O'Reilly Media, Inc., 2008
  1. Cover
  2. JavaScript: The Good Parts
  3. SPECIAL OFFER: Upgrade this ebook with O’Reilly
  4. A Note Regarding Supplemental Files
  5. Preface
  6. Using Code Examples
  7. Safari® Books Online
  8. How to Contact Us
  9. Acknowledgments
  10. 1. Good Parts
  11. Analyzing JavaScript
  12. A Simple Testing Ground
  13. 2. Grammar
  14. Names
  15. Numbers
  16. Strings
  17. Statements
  18. Expressions
  19. Literals
  20. Functions
  21. 3. Objects
  22. Retrieval
  23. Update
  24. Reference
  25. Prototype
  26. Reflection
  27. Enumeration
  28. Delete
  29. Global Abatement
  30. 4. Functions
  31. Function Literal
  32. Invocation
  33. Arguments
  34. Return
  35. Exceptions
  36. Augmenting Types
  37. Recursion
  38. Scope
  39. Closure
  40. Callbacks
  41. Module
  42. Cascade
  43. Curry
  44. Memoization
  45. 5. Inheritance
  46. Object Specifiers
  47. Prototypal
  48. Functional
  49. Parts
  50. 6. Arrays
  51. Length
  52. Delete
  53. Enumeration
  54. Confusion
  55. Methods
  56. Dimensions
  57. 7. Regular Expressions
  58. Construction
  59. Elements
  60. 8. Methods
  61. 9. Style
  62. 10. Beautiful Features
  63. A. Awful Parts
  64. Scope
  65. Semicolon Insertion
  66. Reserved Words
  67. Unicode
  68. typeof
  69. parseInt
  70. +
  71. Floating Point
  72. NaN
  73. Phony Arrays
  74. Falsy Values
  75. hasOwnProperty
  76. Object
  77. B. Bad Parts
  78. with Statement
  79. eval
  80. continue Statement
  81. switch Fall Through
  82. Block-less Statements
  83. ++ −−
  84. Bitwise Operators
  85. The function Statement Versus the function Expression
  86. Typed Wrappers
  87. new
  88. void
  89. C. JSLint
  90. Members
  91. Options
  92. Semicolon
  93. Line Breaking
  94. Comma
  95. Required Blocks
  96. Forbidden Blocks
  97. Expression Statements
  98. for in Statement
  99. switch Statement
  100. var Statement
  101. with Statement
  102. =
  103. == and !=
  104. Labels
  105. Unreachable Code
  106. Confusing Pluses and Minuses
  107. ++ and −−
  108. Bitwise Operators
  109. eval Is Evil
  110. void
  111. Regular Expressions
  112. Constructors and new
  113. Not Looked For
  114. HTML
  115. JSON
  116. Report
  117. D. Syntax Diagrams
  118. E. JSON
  119. Using JSON Securely
  120. A JSON Parser
  121. Index
  122. About the Author
  123. Colophon
  124. SPECIAL OFFER: Upgrade this ebook with O’Reilly

Invocation

Invoking a function suspends the execution of the current function, passing control and parameters to the new function. In addition to the declared parameters, every function receives two additional parameters: this and arguments. The this parameter is very important in object oriented programming, and its value is determined by the invocation pattern. There are four patterns of invocation in JavaScript: the method invocation pattern, the function invocation pattern, the constructor invocation pattern, and the apply invocation pattern. The patterns differ in how the bonus parameter this is initialized.

The invocation operator is a pair of parentheses that follow any expression that produces a function value. The parentheses can contain zero or more expressions, separated by commas. Each expression produces one argument value. Each of the argument values will be assigned to the function's parameter names. There is no runtime error when the number of arguments and the number of parameters do not match. If there are too many argument values, the extra argument values will be ignored. If there are too few argument values, the undefined value will be substituted for the missing values. There is no type checking on the argument values: any type of value can be passed to any parameter.

The Method Invocation Pattern

When a function is stored as a property of an object, we call it a method. When a method is invoked, this is bound to that object. If an invocation expression contains a refinement (that is, a . dot expression or [subscript] expression), it is invoked as a method:

// Create myObject. It has a value and an increment
// method. The increment method takes an optional
// parameter. If the argument is not a number, then 1
// is used as the default.

var myObject = {
    value: 0,
    increment: function (inc) {
        this.value += typeof inc === 'number' ? inc : 1;
    }
};

myObject.increment(  );
document.writeln(myObject.value);    // 1

myObject.increment(2);
document.writeln(myObject.value);    // 3

A method can use this to access the object so that it can retrieve values from the object or modify the object. The binding of this to the object happens at invocation time. This very late binding makes functions that use this highly reusable. Methods that get their object context from this are called public methods.

The Function Invocation Pattern

When a function is not the property of an object, then it is invoked as a function:

var sum = add(3, 4);    // sum is 7

When a function is invoked with this pattern, this is bound to the global object. This was a mistake in the design of the language. Had the language been designed correctly, when the inner function is invoked, this would still be bound to the this variable of the outer function. A consequence of this error is that a method cannot employ an inner function to help it do its work because the inner function does not share the method's access to the object as its this is bound to the wrong value. Fortunately, there is an easy workaround. If the method defines a variable and assigns it the value of this, the inner function will have access to this through that variable. By convention, the name of that variable is that:

// Augment myObject with a double method.

myObject.double = function (  ) {
    var that = this;    // Workaround.

    var helper = function (  ) {
        that.value = add(that.value, that.value);
    };

    helper(  );    // Invoke helper as a function.
};

// Invoke double as a method.

myObject.double(  );
document.writeln(myObject.value);     // 6 

The Constructor Invocation Pattern

JavaScript is a prototypal inheritance language. That means that objects can inherit properties directly from other objects. The language is class-free.

This is a radical departure from the current fashion. Most languages today are classical. Prototypal inheritance is powerfully expressive, but is not widely understood. JavaScript itself is not confident in its prototypal nature, so it offers an object-making syntax that is reminiscent of the classical languages. Few classical programmers found prototypal inheritance to be acceptable, and classically inspired syntax obscures the language's true prototypal nature. It is the worst of both worlds.

If a function is invoked with the new prefix, then a new object will be created with a hidden link to the value of the function's prototype member, and this will be bound to that new object.

The new prefix also changes the behavior of the return statement. We will see more about that next.

// Create a constructor function called Quo.
// It makes an object with a status property.

var Quo = function (string) {
    this.status = string;
};

// Give all instances of Quo a public method
// called get_status.

Quo.prototype.get_status = function (  ) {
    return this.status;
};

// Make an instance of Quo.

var myQuo = new Quo("confused");

document.writeln(myQuo.get_status(  ));  // confused

Functions that are intended to be used with the new prefix are called constructors. By convention, they are kept in variables with a capitalized name. If a constructor is called without the new prefix, very bad things can happen without a compile-time or runtime warning, so the capitalization convention is really important.

Use of this style of constructor functions is not recommended. We will see better alternatives in the next chapter.

The Apply Invocation Pattern

Because JavaScript is a functional object-oriented language, functions can have methods.

The apply method lets us construct an array of arguments to use to invoke a function. It also lets us choose the value of this. The apply method takes two parameters. The first is the value that should be bound to this. The second is an array of parameters.

// Make an array of 2 numbers and add them.

var array = [3, 4];
var sum = add.apply(null, array);    // sum is 7

// Make an object with a status member.

var statusObject = {
    status: 'A-OK'
};

// statusObject does not inherit from Quo.prototype,
// but we can invoke the get_status method on
// statusObject even though statusObject does not have
// a get_status method.

var status = Quo.prototype.get_status.apply(statusObject);
    // status is 'A-OK'