CLOSING REMARKS

I hope you have found this book a useful educational tool, and I hope that going forward you’ll continue to find it a helpful reference. Whether you’re a professional forensics practitioner or a student learning about forensics, this book aims to demonstrate fundamental concepts, show how things work, and provide a set of practical tool examples with the Linux command line.

Many new forensic books focus on application-layer analysis, cloud forensics, mobile forensics, big data analytics, and other new and exciting areas. Traditional digital forensic acquisition and evidence preservation of storage media might seem less exciting by comparison, but it is still a fundamental function that new forensic investigators need to learn.

The community must not be complacent when it comes to advancements in traditional storage media forensics. A lot of change continues to happen in this area, and we as a community need to keep up with the latest developments. This book is intended to be a resource that includes coverage of the latest changes in traditional storage media forensics.

Clearly, not all of the examples, tools, and methods shown here are suitable for every professional forensic lab setting. Many open source forensic tools are a small software development effort undertaken by volunteers (sometimes just a single developer), and some are even abandoned software projects. These cannot easily compete with the products of larger commercial software companies. Nonetheless, even tools that are in experimental stages of development will provide you with an understanding of the problems and how the solutions might look. In addition, I encourage you to explore other tools and methods that might not be covered in this book— open source tools are continuously and rapidly changing, and for every tool and method shown here, there are alternatives that could achieve the same result.

As a final word of encouragement to readers: Learn!

I was drawn into digital forensics and investigation because it’s a field where you’re always learning. The investigative process is learning—learning about how events in an incident transpired. The digital forensics process is learning—learning how technologies are interacting with each other and reconstructing a sequence of technological activity. Digital forensics research and development is learning—learning to develop new tools and methods to overcome challenges and to understand complex technology to advance the body of knowledge.

Digital forensics is a fascinating field. Enjoy it!