Table of Contents for
Regular Expressions Cookbook, 2nd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Regular Expressions Cookbook, 2nd Edition by Steven Levithan Published by O'Reilly Media, Inc., 2012
  1. Cover
  2. Regular Expressions Cookbook
  3. Preface
  4. Caught in the Snarls of Different Versions
  5. Intended Audience
  6. Technology Covered
  7. Organization of This Book
  8. Conventions Used in This Book
  9. Using Code Examples
  10. Safari® Books Online
  11. How to Contact Us
  12. Acknowledgments
  13. 1. Introduction to Regular Expressions
  14. Regular Expressions Defined
  15. Search and Replace with Regular Expressions
  16. Tools for Working with Regular Expressions
  17. 2. Basic Regular Expression Skills
  18. 2.1. Match Literal Text
  19. 2.2. Match Nonprintable Characters
  20. 2.3. Match One of Many Characters
  21. 2.4. Match Any Character
  22. 2.5. Match Something at the Start and/or the End of a Line
  23. 2.6. Match Whole Words
  24. 2.7. Unicode Code Points, Categories, Blocks, and Scripts
  25. 2.8. Match One of Several Alternatives
  26. 2.9. Group and Capture Parts of the Match
  27. 2.10. Match Previously Matched Text Again
  28. 2.11. Capture and Name Parts of the Match
  29. 2.12. Repeat Part of the Regex a Certain Number of Times
  30. 2.13. Choose Minimal or Maximal Repetition
  31. 2.14. Eliminate Needless Backtracking
  32. 2.15. Prevent Runaway Repetition
  33. 2.16. Test for a Match Without Adding It to the Overall Match
  34. 2.17. Match One of Two Alternatives Based on a Condition
  35. 2.18. Add Comments to a Regular Expression
  36. 2.19. Insert Literal Text into the Replacement Text
  37. 2.20. Insert the Regex Match into the Replacement Text
  38. 2.21. Insert Part of the Regex Match into the Replacement Text
  39. 2.22. Insert Match Context into the Replacement Text
  40. 3. Programming with Regular Expressions
  41. Programming Languages and Regex Flavors
  42. 3.1. Literal Regular Expressions in Source Code
  43. 3.2. Import the Regular Expression Library
  44. 3.3. Create Regular Expression Objects
  45. 3.4. Set Regular Expression Options
  46. 3.5. Test If a Match Can Be Found Within a Subject String
  47. 3.6. Test Whether a Regex Matches the Subject String Entirely
  48. 3.7. Retrieve the Matched Text
  49. 3.8. Determine the Position and Length of the Match
  50. 3.9. Retrieve Part of the Matched Text
  51. 3.10. Retrieve a List of All Matches
  52. 3.11. Iterate over All Matches
  53. 3.12. Validate Matches in Procedural Code
  54. 3.13. Find a Match Within Another Match
  55. 3.14. Replace All Matches
  56. 3.15. Replace Matches Reusing Parts of the Match
  57. 3.16. Replace Matches with Replacements Generated in Code
  58. 3.17. Replace All Matches Within the Matches of Another Regex
  59. 3.18. Replace All Matches Between the Matches of Another Regex
  60. 3.19. Split a String
  61. 3.20. Split a String, Keeping the Regex Matches
  62. 3.21. Search Line by Line
  63. Construct a Parser
  64. 4. Validation and Formatting
  65. 4.1. Validate Email Addresses
  66. 4.2. Validate and Format North American Phone Numbers
  67. 4.3. Validate International Phone Numbers
  68. 4.4. Validate Traditional Date Formats
  69. 4.5. Validate Traditional Date Formats, Excluding Invalid Dates
  70. 4.6. Validate Traditional Time Formats
  71. 4.7. Validate ISO 8601 Dates and Times
  72. 4.8. Limit Input to Alphanumeric Characters
  73. 4.9. Limit the Length of Text
  74. 4.10. Limit the Number of Lines in Text
  75. 4.11. Validate Affirmative Responses
  76. 4.12. Validate Social Security Numbers
  77. 4.13. Validate ISBNs
  78. 4.14. Validate ZIP Codes
  79. 4.15. Validate Canadian Postal Codes
  80. 4.16. Validate U.K. Postcodes
  81. 4.17. Find Addresses with Post Office Boxes
  82. 4.18. Reformat Names From “FirstName LastName” to “LastName, FirstName”
  83. 4.19. Validate Password Complexity
  84. 4.20. Validate Credit Card Numbers
  85. 4.21. European VAT Numbers
  86. 5. Words, Lines, and Special Characters
  87. 5.1. Find a Specific Word
  88. 5.2. Find Any of Multiple Words
  89. 5.3. Find Similar Words
  90. 5.4. Find All Except a Specific Word
  91. 5.5. Find Any Word Not Followed by a Specific Word
  92. 5.6. Find Any Word Not Preceded by a Specific Word
  93. 5.7. Find Words Near Each Other
  94. 5.8. Find Repeated Words
  95. 5.9. Remove Duplicate Lines
  96. 5.10. Match Complete Lines That Contain a Word
  97. 5.11. Match Complete Lines That Do Not Contain a Word
  98. 5.12. Trim Leading and Trailing Whitespace
  99. 5.13. Replace Repeated Whitespace with a Single Space
  100. 5.14. Escape Regular Expression Metacharacters
  101. 6. Numbers
  102. 6.1. Integer Numbers
  103. 6.2. Hexadecimal Numbers
  104. 6.3. Binary Numbers
  105. 6.4. Octal Numbers
  106. 6.5. Decimal Numbers
  107. 6.6. Strip Leading Zeros
  108. 6.7. Numbers Within a Certain Range
  109. 6.8. Hexadecimal Numbers Within a Certain Range
  110. 6.9. Integer Numbers with Separators
  111. 6.10. Floating-Point Numbers
  112. 6.11. Numbers with Thousand Separators
  113. 6.12. Add Thousand Separators to Numbers
  114. 6.13. Roman Numerals
  115. 7. Source Code and Log Files
  116. Keywords
  117. Identifiers
  118. Numeric Constants
  119. Operators
  120. Single-Line Comments
  121. Multiline Comments
  122. All Comments
  123. Strings
  124. Strings with Escapes
  125. Regex Literals
  126. Here Documents
  127. Common Log Format
  128. Combined Log Format
  129. Broken Links Reported in Web Logs
  130. 8. URLs, Paths, and Internet Addresses
  131. 8.1. Validating URLs
  132. 8.2. Finding URLs Within Full Text
  133. 8.3. Finding Quoted URLs in Full Text
  134. 8.4. Finding URLs with Parentheses in Full Text
  135. 8.5. Turn URLs into Links
  136. 8.6. Validating URNs
  137. 8.7. Validating Generic URLs
  138. 8.8. Extracting the Scheme from a URL
  139. 8.9. Extracting the User from a URL
  140. 8.10. Extracting the Host from a URL
  141. 8.11. Extracting the Port from a URL
  142. 8.12. Extracting the Path from a URL
  143. 8.13. Extracting the Query from a URL
  144. 8.14. Extracting the Fragment from a URL
  145. 8.15. Validating Domain Names
  146. 8.16. Matching IPv4 Addresses
  147. 8.17. Matching IPv6 Addresses
  148. 8.18. Validate Windows Paths
  149. 8.19. Split Windows Paths into Their Parts
  150. 8.20. Extract the Drive Letter from a Windows Path
  151. 8.21. Extract the Server and Share from a UNC Path
  152. 8.22. Extract the Folder from a Windows Path
  153. 8.23. Extract the Filename from a Windows Path
  154. 8.24. Extract the File Extension from a Windows Path
  155. 8.25. Strip Invalid Characters from Filenames
  156. 9. Markup and Data Formats
  157. Processing Markup and Data Formats with Regular Expressions
  158. 9.1. Find XML-Style Tags
  159. 9.2. Replace Tags with
  160. 9.3. Remove All XML-Style Tags Except and
  161. 9.4. Match XML Names
  162. 9.5. Convert Plain Text to HTML by Adding

    and
    Tags

  163. 9.6. Decode XML Entities
  164. 9.7. Find a Specific Attribute in XML-Style Tags
  165. 9.8. Add a cellspacing Attribute to Tags That Do Not Already Include It
  166. 9.9. Remove XML-Style Comments
  167. 9.10. Find Words Within XML-Style Comments
  168. 9.11. Change the Delimiter Used in CSV Files
  169. 9.12. Extract CSV Fields from a Specific Column
  170. 9.13. Match INI Section Headers
  171. 9.14. Match INI Section Blocks
  172. 9.15. Match INI Name-Value Pairs
  173. Index
  174. Index
  175. Index
  176. Index
  177. Index
  178. Index
  179. Index
  180. Index
  181. Index
  182. Index
  183. Index
  184. Index
  185. Index
  186. Index
  187. Index
  188. Index
  189. Index
  190. Index
  191. Index
  192. Index
  193. Index
  194. Index
  195. Index
  196. Index
  197. Index
  198. Index
  199. About the Authors
  200. Colophon
  201. Copyright
  202. 3.7. Retrieve the Matched Text

    Problem

    You have a regular expression that matches a part of the subject text, and you want to extract the text that was matched. If the regular expression can match the string more than once, you want only the first match. For example, when applying the regex \d+ to the string Do you like 13 or 42?, 13 should be returned.

    Solution

    C#

    For quick one-off matches, you can use the static call:

    string resultString = Regex.Match(subjectString, @"\d+").Value;

    If the regex is provided by the end user, you should use the static call with full exception handling:

    string resultString = null;
    try {
        resultString = Regex.Match(subjectString, @"\d+").Value;
    } catch (ArgumentNullException ex) {
        // Cannot pass null as the regular expression or subject string
    } catch (ArgumentException ex) {
        // Syntax error in the regular expression
    }

    To use the same regex repeatedly, construct a Regex object:

    Regex regexObj = new Regex(@"\d+");
    string resultString = regexObj.Match(subjectString).Value;

    If the regex is provided by the end user, you should use the Regex object with full exception handling:

    string resultString = null;
    try {
        Regex regexObj = new Regex(@"\d+");
        try {
            resultString = regexObj.Match(subjectString).Value;
        } catch (ArgumentNullException ex) {
            // Cannot pass null as the subject string
        }
    } catch (ArgumentException ex) {
        // Syntax error in the regular expression
    }

    VB.NET

    For quick one-off matches, you can use the static call:

    Dim ResultString  = Regex.Match(SubjectString, "\d+").Value

    If the regex is provided by the end user, you should use the static call with full exception handling:

    Dim ResultString As String = Nothing
    Try
        ResultString = Regex.Match(SubjectString, "\d+").Value
    Catch ex As ArgumentNullException
        'Cannot pass Nothing as the regular expression or subject string
    Catch ex As ArgumentException
        'Syntax error in the regular expression
    End Try

    To use the same regex repeatedly, construct a Regex object:

    Dim RegexObj As New Regex("\d+")
    Dim ResultString = RegexObj.Match(SubjectString).Value

    If the regex is provided by the end user, you should use the Regex object with full exception handling:

    Dim ResultString As String = Nothing
    Try
        Dim RegexObj As New Regex("\d+")
        Try
            ResultString = RegexObj.Match(SubjectString).Value
        Catch ex As ArgumentNullException
            'Cannot pass Nothing as the subject string
        End Try
    Catch ex As ArgumentException
        'Syntax error in the regular expression
    End Try

    Java

    Create a Matcher to run the search and store the result:

    String resultString = null;
    Pattern regex = Pattern.compile("\\d+");
    Matcher regexMatcher = regex.matcher(subjectString);
    if (regexMatcher.find()) {
        resultString = regexMatcher.group();
    }

    If the regex is provided by the end user, you should use full exception handling:

    String resultString = null;
    try {
        Pattern regex = Pattern.compile("\\d+");
        Matcher regexMatcher = regex.matcher(subjectString);
        if (regexMatcher.find()) {
            resultString = regexMatcher.group();
        }
    } catch (PatternSyntaxException ex) {
        // Syntax error in the regular expression
    }

    JavaScript

    var result = subject.match(/\d+/);
    if (result) {
        result = result[0];
    } else {
        result = '';
    }

    PHP

    if (preg_match('/\d+/', $subject, $groups)) {
        $result = $groups[0];
    } else {
        $result = '';
    }

    Perl

    if ($subject =~ m/\d+/) {
        $result = $&;
    } else {
        $result = '';
    }

    Python

    For quick one-off matches, you can use the global function:

    matchobj = re.search("regex pattern", subject)
    if matchobj:
        result = matchobj.group()
    else:
        result = ""

    To use the same regex repeatedly, use a compiled object:

    reobj = re.compile("regex pattern")
    matchobj = reobj.search(subject)
    if match:
        result = matchobj.group()
    else:
        result = ""

    Ruby

    You can use the =~ operator and its magic $& variable:

    if subject =~ /regex pattern/
        result = $&
    else
        result = ""
    end

    Alternatively, you can call the match method on a Regexp object:

    matchobj = /regex pattern/.match(subject)
    if matchobj
        result = matchobj[0]
    else
        result = ""
    end

    Discussion

    Extracting the part of a longer string that fits the pattern is another prime job for regular expressions. All programming languages discussed in this book provide an easy way to get the first regular expression match from a string. The function will attempt the regular expression at the start of the string and continue scanning through the string until the regular expression matches.

    .NET

    The .NET Regex class does not have a member that returns the string matched by the regular expression. But it does have a Match() method that returns an instance of the Match class. This Match object has a property called Value, which holds the text matched by the regular expression. If the regular expression fails to match, it still returns a Match object, but the Value property holds an empty string.

    A total of five overloads allows you to call the Match() method in various ways. The first parameter is always the string that holds the subject text in which you want the regular expression to find a match. This parameter should not be null. Otherwise, Match() will throw an ArgumentNullException.

    If you want to use the regular expression only a few times, you can use a static call. The second parameter is then the regular expression you want to use. You can pass regex options as an optional third parameter. If your regular expression has a syntax error, an ArgumentException will be thrown.

    If you want to use the same regular expression on many strings, you can make your code more efficient by constructing a Regex object first and then calling Match() on that object. The first parameter with the subject string is then the only required parameter. You can specify an optional second parameter to indicate the character index at which the regular expression should begin to search. Essentially, the number you pass as the second parameter is the number of characters at the start of your subject string that the regular expression should ignore. This can be useful when you’ve already processed the string up to a point and want to search the remainder of the string. If you specify this number, it must be in the range from zero to the length of the subject string. Otherwise, IsMatch() throws an ArgumentOutOfRangeException.

    If you specify the second parameter with the starting position, you can specify a third parameter that indicates the length of the substring the regular expression is allowed to search through. This number must be greater than or equal to zero and must not exceed the length of the subject string (first parameter) minus the starting offset (second parameter). For instance, regexObj.Match("123456", 3, 2) tries to find a match in "45". If the third parameter is greater than the length of the subject string, Match() throws an ArgumentOutOfRangeException. If the third parameter is not greater than the length of the subject string, but the sum of the second and third parameters is greater than the length of the string, then another IndexOutOfRangeException is thrown. If you allow the user to specify starting and ending positions, either check them before calling Match() or make sure to catch both out-of-range exceptions.

    The static overloads do not allow for the parameters that specify which part of the string the regular expression can search through.

    Java

    To get the part of a string matched by a regular expression, you need to create a Matcher, as explained in Recipe 3.3. Then call the find() method on your matcher, without any parameters. If find() returns true, call group() without any parameters to retrieve the text matched by your regular expression. If find() returns false, you should not call group(), as all you’ll get is an IllegalStateException.

    Matcher.find() takes one optional parameter with the starting position in the subject string. You can use this to begin the search at a certain position in the string. Specify zero to begin the match attempt at the start of the string. An IndexOutOfBoundsException is thrown if you set the starting position to a negative number, or to a number greater than the length of the subject string.

    If you omit the parameter, find() starts at the character after the previous match found by find(). If you’re calling find() for the first time after Pattern.matcher() or Matcher.reset(), then find() begins searching at the start of the string.

    JavaScript

    The string.match() method takes a regular expression as its only parameter. You can pass the regular expression as a literal regex, a regular expression object, or as a string. If you pass a string, string.match() creates a temporary regexp object.

    When the match attempt fails, string.match() returns null. This allows you to differentiate between a regex that finds no matches, and a regex that finds a zero-length match. It does mean that you cannot directly display the result, as “null” or an error about a null object may appear.

    When the match attempt succeeds, string.match() returns an array with the details of the match. Element zero in the array is a string that holds the text matched by the regular expression.

    Make sure that you do not add the /g flag to your regular expression. If you do, string.match() behaves differently, as Recipe 3.10 explains.

    PHP

    The preg_match() function discussed in the previous two recipes takes an optional third parameter to store the text matched by the regular expression and its capturing groups. When preg_match() returns 1, the variable holds an array of strings. Element zero in the array holds the overall regular expression match. The other elements are explained in Recipe 3.9.

    Perl

    When the pattern-matching operator m// finds a match, it sets several special variables. One of those is the $& variable, which holds the part of the string matched by the regular expression. The other special variables are explained in later recipes.

    Python

    Recipe 3.5 explains the search() function. This time, we store the MatchObject instance returned by search() into a variable. To get the part of the string matched by the regular expression, we call the group() method on the match object without any parameters.

    Ruby

    Recipe 3.8 explains the $~ variable and the MatchData object. In a string context, this object evaluates to the text matched by the regular expression. In an array context, this object evaluates to an array with element number zero holding the overall regular expression match.

    $& is a special read-only variable. It is an alias for $~[0], which holds a string with the text matched by the regular expression.

    See Also

    Recipe 3.5 shows code to test whether a regex matches a subject string, without retrieving the actual match.

    Recipe 3.8 shows code to determine the position and length of the match.

    Recipe 3.9 shows code to get the text matched by a particular part (capturing group) of a regex.

    Recipe 3.10 shows code to get a list of all the matches a regex can find in a string.

    Recipe 3.11 shows code to iterate over all the matches a regex can find in a string.