Table of Contents for
Regular Expressions Cookbook, 2nd Edition

Version ebook / Retour

Cover image for bash Cookbook, 2nd Edition Regular Expressions Cookbook, 2nd Edition by Steven Levithan Published by O'Reilly Media, Inc., 2012
  1. Cover
  2. Regular Expressions Cookbook
  3. Preface
  4. Caught in the Snarls of Different Versions
  5. Intended Audience
  6. Technology Covered
  7. Organization of This Book
  8. Conventions Used in This Book
  9. Using Code Examples
  10. Safari® Books Online
  11. How to Contact Us
  12. Acknowledgments
  13. 1. Introduction to Regular Expressions
  14. Regular Expressions Defined
  15. Search and Replace with Regular Expressions
  16. Tools for Working with Regular Expressions
  17. 2. Basic Regular Expression Skills
  18. 2.1. Match Literal Text
  19. 2.2. Match Nonprintable Characters
  20. 2.3. Match One of Many Characters
  21. 2.4. Match Any Character
  22. 2.5. Match Something at the Start and/or the End of a Line
  23. 2.6. Match Whole Words
  24. 2.7. Unicode Code Points, Categories, Blocks, and Scripts
  25. 2.8. Match One of Several Alternatives
  26. 2.9. Group and Capture Parts of the Match
  27. 2.10. Match Previously Matched Text Again
  28. 2.11. Capture and Name Parts of the Match
  29. 2.12. Repeat Part of the Regex a Certain Number of Times
  30. 2.13. Choose Minimal or Maximal Repetition
  31. 2.14. Eliminate Needless Backtracking
  32. 2.15. Prevent Runaway Repetition
  33. 2.16. Test for a Match Without Adding It to the Overall Match
  34. 2.17. Match One of Two Alternatives Based on a Condition
  35. 2.18. Add Comments to a Regular Expression
  36. 2.19. Insert Literal Text into the Replacement Text
  37. 2.20. Insert the Regex Match into the Replacement Text
  38. 2.21. Insert Part of the Regex Match into the Replacement Text
  39. 2.22. Insert Match Context into the Replacement Text
  40. 3. Programming with Regular Expressions
  41. Programming Languages and Regex Flavors
  42. 3.1. Literal Regular Expressions in Source Code
  43. 3.2. Import the Regular Expression Library
  44. 3.3. Create Regular Expression Objects
  45. 3.4. Set Regular Expression Options
  46. 3.5. Test If a Match Can Be Found Within a Subject String
  47. 3.6. Test Whether a Regex Matches the Subject String Entirely
  48. 3.7. Retrieve the Matched Text
  49. 3.8. Determine the Position and Length of the Match
  50. 3.9. Retrieve Part of the Matched Text
  51. 3.10. Retrieve a List of All Matches
  52. 3.11. Iterate over All Matches
  53. 3.12. Validate Matches in Procedural Code
  54. 3.13. Find a Match Within Another Match
  55. 3.14. Replace All Matches
  56. 3.15. Replace Matches Reusing Parts of the Match
  57. 3.16. Replace Matches with Replacements Generated in Code
  58. 3.17. Replace All Matches Within the Matches of Another Regex
  59. 3.18. Replace All Matches Between the Matches of Another Regex
  60. 3.19. Split a String
  61. 3.20. Split a String, Keeping the Regex Matches
  62. 3.21. Search Line by Line
  63. Construct a Parser
  64. 4. Validation and Formatting
  65. 4.1. Validate Email Addresses
  66. 4.2. Validate and Format North American Phone Numbers
  67. 4.3. Validate International Phone Numbers
  68. 4.4. Validate Traditional Date Formats
  69. 4.5. Validate Traditional Date Formats, Excluding Invalid Dates
  70. 4.6. Validate Traditional Time Formats
  71. 4.7. Validate ISO 8601 Dates and Times
  72. 4.8. Limit Input to Alphanumeric Characters
  73. 4.9. Limit the Length of Text
  74. 4.10. Limit the Number of Lines in Text
  75. 4.11. Validate Affirmative Responses
  76. 4.12. Validate Social Security Numbers
  77. 4.13. Validate ISBNs
  78. 4.14. Validate ZIP Codes
  79. 4.15. Validate Canadian Postal Codes
  80. 4.16. Validate U.K. Postcodes
  81. 4.17. Find Addresses with Post Office Boxes
  82. 4.18. Reformat Names From “FirstName LastName” to “LastName, FirstName”
  83. 4.19. Validate Password Complexity
  84. 4.20. Validate Credit Card Numbers
  85. 4.21. European VAT Numbers
  86. 5. Words, Lines, and Special Characters
  87. 5.1. Find a Specific Word
  88. 5.2. Find Any of Multiple Words
  89. 5.3. Find Similar Words
  90. 5.4. Find All Except a Specific Word
  91. 5.5. Find Any Word Not Followed by a Specific Word
  92. 5.6. Find Any Word Not Preceded by a Specific Word
  93. 5.7. Find Words Near Each Other
  94. 5.8. Find Repeated Words
  95. 5.9. Remove Duplicate Lines
  96. 5.10. Match Complete Lines That Contain a Word
  97. 5.11. Match Complete Lines That Do Not Contain a Word
  98. 5.12. Trim Leading and Trailing Whitespace
  99. 5.13. Replace Repeated Whitespace with a Single Space
  100. 5.14. Escape Regular Expression Metacharacters
  101. 6. Numbers
  102. 6.1. Integer Numbers
  103. 6.2. Hexadecimal Numbers
  104. 6.3. Binary Numbers
  105. 6.4. Octal Numbers
  106. 6.5. Decimal Numbers
  107. 6.6. Strip Leading Zeros
  108. 6.7. Numbers Within a Certain Range
  109. 6.8. Hexadecimal Numbers Within a Certain Range
  110. 6.9. Integer Numbers with Separators
  111. 6.10. Floating-Point Numbers
  112. 6.11. Numbers with Thousand Separators
  113. 6.12. Add Thousand Separators to Numbers
  114. 6.13. Roman Numerals
  115. 7. Source Code and Log Files
  116. Keywords
  117. Identifiers
  118. Numeric Constants
  119. Operators
  120. Single-Line Comments
  121. Multiline Comments
  122. All Comments
  123. Strings
  124. Strings with Escapes
  125. Regex Literals
  126. Here Documents
  127. Common Log Format
  128. Combined Log Format
  129. Broken Links Reported in Web Logs
  130. 8. URLs, Paths, and Internet Addresses
  131. 8.1. Validating URLs
  132. 8.2. Finding URLs Within Full Text
  133. 8.3. Finding Quoted URLs in Full Text
  134. 8.4. Finding URLs with Parentheses in Full Text
  135. 8.5. Turn URLs into Links
  136. 8.6. Validating URNs
  137. 8.7. Validating Generic URLs
  138. 8.8. Extracting the Scheme from a URL
  139. 8.9. Extracting the User from a URL
  140. 8.10. Extracting the Host from a URL
  141. 8.11. Extracting the Port from a URL
  142. 8.12. Extracting the Path from a URL
  143. 8.13. Extracting the Query from a URL
  144. 8.14. Extracting the Fragment from a URL
  145. 8.15. Validating Domain Names
  146. 8.16. Matching IPv4 Addresses
  147. 8.17. Matching IPv6 Addresses
  148. 8.18. Validate Windows Paths
  149. 8.19. Split Windows Paths into Their Parts
  150. 8.20. Extract the Drive Letter from a Windows Path
  151. 8.21. Extract the Server and Share from a UNC Path
  152. 8.22. Extract the Folder from a Windows Path
  153. 8.23. Extract the Filename from a Windows Path
  154. 8.24. Extract the File Extension from a Windows Path
  155. 8.25. Strip Invalid Characters from Filenames
  156. 9. Markup and Data Formats
  157. Processing Markup and Data Formats with Regular Expressions
  158. 9.1. Find XML-Style Tags
  159. 9.2. Replace Tags with
  160. 9.3. Remove All XML-Style Tags Except and
  161. 9.4. Match XML Names
  162. 9.5. Convert Plain Text to HTML by Adding

    and
    Tags

  163. 9.6. Decode XML Entities
  164. 9.7. Find a Specific Attribute in XML-Style Tags
  165. 9.8. Add a cellspacing Attribute to Tags That Do Not Already Include It
  166. 9.9. Remove XML-Style Comments
  167. 9.10. Find Words Within XML-Style Comments
  168. 9.11. Change the Delimiter Used in CSV Files
  169. 9.12. Extract CSV Fields from a Specific Column
  170. 9.13. Match INI Section Headers
  171. 9.14. Match INI Section Blocks
  172. 9.15. Match INI Name-Value Pairs
  173. Index
  174. Index
  175. Index
  176. Index
  177. Index
  178. Index
  179. Index
  180. Index
  181. Index
  182. Index
  183. Index
  184. Index
  185. Index
  186. Index
  187. Index
  188. Index
  189. Index
  190. Index
  191. Index
  192. Index
  193. Index
  194. Index
  195. Index
  196. Index
  197. Index
  198. Index
  199. About the Authors
  200. Colophon
  201. Copyright
  202. 2.21. Insert Part of the Regex Match into the Replacement Text

    Problem

    Match any contiguous sequence of 10 digits, such as 1234567890. Convert the sequence into a nicely formatted phone number—for example, (123) 456-7890.

    Solution

    Regular expression

    \b(\d{3})(\d{3})(\d{4})\b
    Regex options: None
    Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement

($1)$2-$3
Replacement text flavors: .NET, Java, JavaScript, PHP, Perl
(${1})${2}-${3}
Replacement text flavors: .NET, PHP, Perl
(\1)\2-\3
Replacement text flavors: PHP, Python, Ruby

Discussion

Replacements using capturing groups

Recipe 2.10 explains how you can use capturing groups in your regular expression to match the same text more than once. The text matched by each capturing group in your regex is also available after each successful match. You can insert the text of some or all capturing groups—in any order, or even more than once—into the replacement text.

Some flavors, such as Python and Ruby, use the same «\1» syntax for backreferences in both the regular expression and the replacement text. Other flavors use Perl’s «$1» syntax, using a dollar sign instead of a backslash. PHP supports both.

In Perl, «$1» and above are actually variables that are set after each successful regex match. You can use them anywhere in your code until the next regex match. .NET, Java, JavaScript, and PHP support «$1» only in the replacement syntax. These programming languages do offer other ways to access capturing groups in code. Chapter 3 explains that in detail.

$10 and higher

All regex flavors in this book support up to 99 capturing groups in a regular expression. In the replacement text, ambiguity can occur with «$10» or «\10» and above. These can be interpreted as either the 10th capturing group, or the first capturing group followed by a literal zero.

.NET, XRegExp, PHP, and Perl allow you to put curly braces around the number to make your intention clear. «${10}» is always the 10th capturing group, and «${1}0» is always the first followed by a literal zero.

Java and JavaScript try to be clever with «$10». If a capturing group with the specified two-digit number exists in your regular expression, both digits are used for the capturing group. If fewer capturing groups exist, only the first digit is used to reference the group, leaving the second as a literal. Thus «$23» is the 23rd capturing group, if it exists. Otherwise, it is the second capturing group followed by a literal «3».

.NET, XRegExp, PHP, Perl, Python, and Ruby always treat «$10» and «\10» as the 10th capturing group, regardless of whether it exists. If it doesn’t, the behavior for nonexistent groups comes into play.

References to nonexistent groups

The regular expression in the solution for this recipe has three capturing groups. If you type «$4» or «\4» into the replacement text, you’re adding a reference to a capturing group that does not exist. This triggers one of three different behaviors.

Java, XRegExp, and Python will cry foul by raising an exception or returning an error message. Do not use invalid backreferences with these flavors. (Actually, you shouldn’t use invalid backreferences with any flavor.) If you want to insert «$4» or «\4» literally, escape the dollar sign or backslash. Recipe 2.19 explains this in detail.

PHP, Perl, and Ruby substitute all backreferences in the replacement text, including those that point to groups that don’t exist. Groups that don’t exist did not capture any text and therefore references to these groups are simply replaced with nothing.

Finally, .NET and JavaScript (without XRegExp) leave backreferences to groups that don’t exist as literal text in the replacement.

All flavors do replace groups that do exist in the regular expression but did not capture anything. Those are replaced with nothing.

Solution Using Named Capture

Regular expression

\b(?<area>\d{3})(?<exchange>\d{3})(?<number>\d{4})\b
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
\b(?'area'\d{3})(?'exchange'\d{3})(?'number'\d{4})\b
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9
\b(?P<area>\d{3})(?P<exchange>\d{3})(?P<number>\d{4})\b
Regex options: None
Regex flavors: PCRE, Perl 5.10, Python

Replacement

(${area})${exchange}-${number}
Replacement text flavors: .NET, Java 7, XRegExp
(\g<area>)\g<exchange>-\g<number>
Replacement text flavor: Python
(\k<area>)\k<exchange>-\k<number>
Replacement text flavor: Ruby 1.9
(\k'area')\k'exchange'-\k'number'
Replacement text flavor: Ruby 1.9
($+{area})$+{exchange}-$+{number}
Replacement text flavor: Perl 5.10
($1)$2-$3
Replacement text flavor: PHP

Flavors that support named capture

.NET, Java 7, XRegExp, Python, and Ruby 1.9 allow you to use named backreferences in the replacement text if you used named capturing groups in your regular expression. The syntax for named backreferences in the replacement text differs from that in the regular expression.

Ruby uses the same syntax for backreferences in the replacement text as it does in the regular expression. For named capturing groups in Ruby 1.9, this syntax is «\k<group>» or «\k'group'». The choice between angle brackets and single quotes is merely a notational convenience.

Perl 5.10 and later store the text matched by named capturing groups into the hash %+. You can get the text matched by the group “name” with $+{name}. Perl interpolates variables in the replacement text, so you can treat «$+{name}» as a named backreference in the replacement text.

PHP (using PCRE) supports named capturing groups in regular expressions, but not in the replacement text. You can use numbered backreferences in the replacement text to named capturing groups in the regular expression. PCRE assigns numbers to both named and unnamed groups, from left to right.

.NET, Java 7, XRegExp, Python, and Ruby 1.9 also allow numbered references to named groups. However, .NET uses a different numbering scheme for named groups, as Recipe 2.11 explains. Mixing names and numbers with .NET, Java 7, XRegExp, Python, or Ruby is not recommended. Either give all your capturing groups names or don’t name any groups at all. Always use named backreferences for named groups.

See Also

Recipe 2.9 explains the capturing groups that backreferences refer to.

Recipe 2.11 explains named capturing groups. Naming the groups in your regex and the backreferences in your replacement text makes them easier to read and maintain.

Search and Replace with Regular Expressions in Chapter 1 describes the various replacement text flavors.

Recipe 2.10 shows how to use backrefreences in the regular expression itself. The syntax is different than for backreferences in the replacement text.

Recipe 3.15 explains how to use replacement text in source code.